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2. Related Work

Few-shot Learning via Meta-Learning
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Hanxiao Liu, Karen Simonyan, Yiming Yang. (2018). DARTS: Differentiable
Architecture Search. arXiv preprint arXiv:1806.09055
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2. Related Work

Few-shot Learning via Meta-Learning
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2. Related Work

ICML(2017), 24 6" J7|= 123953| 2I&

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

Chelsea Finn' Pieter Abbeel ' > Sergey Levine '

Chelsea Finn, Pieter Abbeel, Sergey Levine. (2017). Model-Agnostic Meta-Learning
for Fast Adaptation of Deep Networks. arXiv preprint arXiv:1703.03400
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2. Related Work

Model-Agnostic Meta-Learning
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2. Related Work

Neural Architecture Search
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2. Related Work

ICLR(2018), 244 68 7|F 48163| 012

DARTS: DIFFERENTIABLE ARCHITECTURE SEARCH

Hanxiao Liu* Karen Simonyan Yiming Yang

CMU DeepMind CMU

hanxiaol@cs.cmu.com simonyanf@google.com yiming@cs.cmu.edu
ABSTRACT

This paper addresses the scalability challenge of architecture search by formulating
the task in a differentiable manner. Unlike conventional approaches of applying evo-
lution or reinforcement learning over a discrete and non-differentiable search space,
our method is based on the continuous relaxation of the architecture representation,
allowing efficient search of the architecture using gradient descent. Extensive
experiments on CIFAR-10, ImageNet, Penn Treebank and WikiText-2 show that
our algorithm excels in discovering high-performance convolutional architectures
for image classification and recurrent architectures for language modeling, while
being orders of magnitude faster than state-of-the-art non-differentiable techniques.
Our implementation has been made publicly available to facilitate further research
on efficient architecture search algorithms.

Hanxiao Liu, Karen Simonyan, Yiming Yang. (2018).
DARTS: Differentiable Architecture Search. arXiv
preprint arXiv:1806.09055
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2. Related Work

DARTS
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2. Related Work

DARTS

— Continuous search space

[0 ] i OPERATIONS =

[pooling,
standard convolution,

skip connection,

.
Op1 Op2 Op3 ]

+

prose 4 Gf)
) \ 56D () = Z exp (ao j ) | )O(x)

| (- Mixed Operation - 5c0 ZO’EO eXp (“g,])

Network

Hanxiao Liu, Karen Simonyan, Yiming Yang. (2018).

DARTS: Differentiable Architecture Search. arXiv preprint arXiv:1806.09055
https://towardsdatascience.com/intuitive-explanation-of-differentiable-
architecture-search-darts-692bdadcc69c
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— Continuous search space
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Transfer Learning with Neural AutoML _ Auto-Meta:
Automated Gradient Based Meta Learner Search

Catherine Wong Neil Houlshy Jaehong Kim!  Sangyeul Lee! Sungwan Kim' Moonsu Cha'  Jung Kwon Lee!
MIT Google Al
catwong@mit.edu neilhoulsby@google.com Youngduck Choi'? Yongseok Choi' Dong-Yeon Cho! Jiwon Kim!
Brain!
Yifeng Lu Andrea Gesmundo SK T-Brain

Yale University”

) Google Al Google Al { xhark, sylee0335, swO726.kim, ckanstnzja, jklee,
yifenglu@google.com agesmundo@google.com yschoi, dycho24, jk} @sktbrain.com
youngduck.choi@yale.edu
Abstract Abstract

Fully automating machine learning pipelines is one of the key challenges of current

We reduce the computational cost of Neural AutoML with transfer learning. Au- artificial intelligence research, since practical machine learning often requires costly
toML relieves human effort by automating the design of ML algorithms. Neural and time-consuming human-powered processes such as model design, algorithm
AutoML has become popular for the design of deep learning architectures, however development, and hyperparameter tuning. In this paper, we verify that automated
hi hod h hich . To add hi ’ T f : architecture search synergizes with the effect of gradient-based meta learning. We
this method has a high computation E:OSI. _U address this we propose ram‘t er adopt the progressive neural architecture search [14] to find optimal architectures
Neural AutoML that uses knowledge from prior tasks to speed up network design. for meta-learners. The gradient based meta-learner whose architecture was automat-
We extend RL-based architecture search methods to support parallel training on ically found achieved state-of-the-art results on the 5-shot 5-way Mini-ImageNet
multiple tasks and then transfer the search strategy to new tasks. On language and classification problem with 74.65% accuracy, which is 11.51% improvement over

the result obtained by the first gradient-based meta-learner called MAML [8]. To
our best knowledge, this work is the first successful neural architecture search Y
implementation in the context of meta learning.

image classification tasks, Transfer Neural AutoML reduces convergence time over
single-task training by over an order of magnitude on many tasks.

Catherine Wong, Neil Houlsby, Yifeng Lu, Andrea Gesmundo. (2018). Transfer Learning with Neural
AutoML. arXiv preprint arXiv:1803.02780

Jaehong Kim, Sangyeul Lee, Sungwan Kim, Moonsu Cha, Jung Kwon Lee, Youngduck Choi, Yongseok
Choi, Dong-Yeon Cho, Jiwon Kim. (2018). Auto-Meta: Automated Gradient Based Meta Learner Search.
arXiv preprint arXiv: 1806.06927
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3. Marrying Gradient-based Meta-Learning and Gradient-based NAS

Problem Setup for Few-Shot Classification
— JIH™XQI supervised deep learning

freimin L pirase mrnded test plrase

Classification with enough training examples

— Few-shot training + meta-learning

=
tradning set test sef
Meta-Training
— -
BRE @PE@ [
! i Swtind -
trafsing set test set

L]
B E L b . i ! el
(UNSEEN classes)

traiming set test set

Meta-Learning for Few-Shot Classification
https://www.researchgate.net/figure/Comparison-between-the-few-shot-
classification-and-the-standard-supervised-learning_fig2_336424678

@) SEJONG UNIVERSITY MAIN LAB | MACHINE INTELLIGENCE AND NETWORKING LAB



3. Marrying Gradient-based Meta-Learning and Gradient-based NAS

Gradient-based Meta-Learning of Neural Architectures
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3. Marrying Gradient-based Meta-Learning and Gradient-based NAS

Gradient-based Meta-Learning of Neural Architectures
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Hanxiao Liu, Karen Simonyan, Yiming Yang. (2018). DARTS:
Differentiable Architecture Search. arXiv preprint arXiv:1806.09055
https://towardsdatascience.com/basics-of-few-shot-learning-with-
optimization-based-meta-learning-e6e9ffd4775a
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3. Marrying Gradient-based Meta-Learning and Gradient-based NAS

Gradient-based Meta-Learning of Neural Architectures
— Meta-Objective:
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Thomas Elsken, Benedikt Staffler, Jan Hendrik Metzen, Frank Hutter.

(2019). Meta-Learning of Neural Architectures for Few-Shot
Learning. arXiv preprint arXiv:1911.11090
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3. Marrying Gradient-based Meta-Learning and Gradient-based NAS

Gradient-based Meta-Learning of Neural Architectures
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Algorithm 1 METANAS: Meta-Learning of Neural Archi-
tectures
1: Input:

distribution over tasks png)
task-learner " (w, a, D,’,. ) #e.g. DARTS [32]
meta-learner ¥, ¥, #e.g. REPTILE [36]

2: Initialize Wyetas Ometa

3: while not converged do

4:  Sample tasks 7y.....7, from p(7T)

5. | forall 7; do Task-Learning(DARTS)
6: ’UJ% ) CE% A (I)k (w’m,etaa Ometas D;Ea@n)

7: | end for

8 | Wmeta ¢ Vap (Wineta, {w%,a%,’]}}?ﬂ)

9 | Wmeta = Vo (meta, {wh,, 07, T} 1) | Meta-Learning(MAML)
10: end while

[a—
[a—

. return Wmetay Xmeta

Thomas Elsken, Benedikt Staffler, Jan Hendrik Metzen, Frank
Hutter. (2019). Meta-Learning of Neural Architectures for Few-
Shot Learning. arXiv preprint arXiv:1911.11090
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4. Task-dependent Architecture Adaptation

Learning of new task after meta-learning

Algorithm 3 Learning of new task after meta-learning (i.e.,
meta-testing) with DARTS.

initial meta architecture auerq meta learned architecture g, task-dependent architectures

1: Input: new task 7 = (Dyrain, Diest)
meta-learned architecture and weights &,,etq, Wineta
WT = Wmeta M meta learning
QT < Qypeta o o | >
for j < 1,...,kdo
W — Wt — )\ta,skvw’C'T(wTaaTaDtT‘am)
a1 < a1 — &task Va £ (W, a7, Dirain)
end for
a1 < PRUNE(a)
Evaluate D;.s; with a7, w

task adapation

Ti

== Conv3x3 Wmm==  Convbxs ™= MaxPool

A ATl

Thomas Elsken, Benedikt Staffler, Jan Hendrik Metzen, Frank
Hutter. (2019). Meta-Learning of Neural Architectures for Few-
Shot Learning. arXiv preprint arXiv:1911.11090
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4. Task-dependent Architecture Adaptation

Learning of new task after meta-learning
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Thomas Elsken, Benedikt Staffler, Jan Hendrik Metzen, Frank
Hutter. (2019). Meta-Learning of Neural Architectures for Few-
Shot Learning. arXiv preprint arXiv:1911.11090
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4. Task-dependent Architecture Adaptation

Soft-Pruning of Mixture over Operations
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4. Task-dependent Architecture Adaptation

Soft-Pruning of Mixture over Input Nodes
— YUHO| IIBX|Z operation?| 7t X[t Lo HAIO 2 sparsify

MixedOp(x®)

(k.))
i<j Zk<j exp <'3 >

» Task training 2F50ilA| 022 annealing &= temperature g 327t

@) SEJONG UNIVERSITY MAIN LAB | MACHINE INTELLIGENCE AND NETWORKING LAB



5. Experiments

Omniglot dataset
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5. Experiments

DARTS

— Search Space
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Hanxiao Liu, Karen Simonyan, Yiming Yang. (2018).
DARTS: Differentiable Architecture Search. arXiv
preprint arXiv:1806.09055
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5. Experiments

Results

dil conv_3x3
O e N i .
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conv_3x3 dilconv_3x3 — T— sep_conv_3x3 / 1 \—/
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1
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(a) Normal cell. (b) Reduction cell.
Omniglot

Method # params || 1-shot, 20 way

MAML]16] 30k 95.8 +£0.03

MAMLA++[1] ; 97.65 4+ 0.05

T-NAS++[29] 27k -

REPTILE[26] 30k 89.43 +0.14

AutoMeta[24] 100k -

METANAS * IM 97.74 + 0.08

TADAM [37] 12M -

MetaOptNet [27]' | 12M -
LEO [42] 36.5M ) Thomas Elsken, Benedikt Staffler, Jan Hendrik Metzen, Frank

Hutter. (2019). Meta-Learning of Neural Architectures for Few-

Shot Learning. arXiv preprint arXiv:1911.11090
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6. Conclusion

initial meta architecture 014 meta learned architecture g* task-dependent architectures
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Thomas Elsken, Benedikt Staffler, Jan Hendrik Metzen, Frank
Hutter. (2019). Meta-Learning of Neural Architectures for Few-
Shot Learning. arXiv preprint arXiv:1911.11090
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